Ultrafiltration-based recovery of coagulants for reuse in potable treatment

Mr. James Keeley, Dr. Peter Jarvis and Prof. Simon Judd

The Industrial Doctorate Centre for the Water Sector

3. Why is it not already in use?

Commercial coagulants are still relatively cheap and recovery processes have previously struggled to recover coagulants on an economically viable basis

Carru-over of the impurities can contaminate the recovered coagulant. This threatens treatment performance and risks failure of water quality regulations.

A review of the literature and economic modelling were used to identify the most economically viable selective recovery process: ultrafiltration

4. Selective Recovery with UF

Determining the correct pore size is key to successfully recovering coagulant while also rejecting unwanted organic contaminants.

Turbidity and DOC Removals with Recovered and

Turbidity and DOC removals were matched $(\pm 10\%)$

Jar tests were used to compare recovered alum to fresh

6. Outlook

commercial coagulant

- Despite incomplete rejection of DOC, recovered alum performs well
- Alum can be recovered using ultrafiltration at economically feasible fluxes
- Work will be repeated for ferric coagulants, to determine their performance

SEVERN

TRENT

WATER

Stringent potable disinfection by-product regulations may limit the uptake of potable coagulant recovery; future work will investigate the implementation of reusing recovered coagulant in wastewater treatment, where the regulatory framework is more accommodating to elevating DOC loads.

References: 1. Henderson, 2004; 2. Pan, 2004; 3. UKWIR, 1999

cottish

Water

www.stream-idc.net

anglianwater j.m.keeley@cranfield.ac.uk Cranfield Water Science Institute, Cranfield University, Bedfordshire, MK43 0AL

Cranfield

SRC